用户手册

A

使用产品前,请仔细阅读本手册,以免在操作过程中出现失误

◆ 品质保证和责任声明

品质保证: a、产品自出厂后7天内如有生产质量问题,本公司提供免费调换服务;

- b、产品自出厂后 24 个月内,如有生产质量问题,本公司提供免费维修服务:
- c、产品自出厂后,本公司提供终身维修服务,不在免费服务范围内的 项目,收取维修成本费用。
- **责任声明**: a、尽管本公司已经在控制器中设计了多种保护措施,使用者仍旧应该在控制器应用系统中设置适当的保护装置,充分考虑到由于控制器的可靠性可能带来的损失;
 - b、本公司声明,除了控制器本身,不承担任何由于控制器的可靠性或 者其他原因引发的人身、财产等一切损失的赔偿责任。

! 安全提示

- 操作前请仔细阅读说明。
- 如果有迹象表明,温控卡在运输过程中损坏,请不要通电。
- > 温控卡电源接通前,
 - 请检查接入温控箱的电源是否符合要求;
 - 请检查温控箱和模具的加热-感温接线是否一致,并可靠连接;
 - 请确保温控箱的风机处于工作状态。
- 温控卡出厂设置为闭环自动控制,接通电源后,输出可能会启动; 在接通电源之前,请考虑对生产过程可能产生的影响。
- 温控卡启动时会显示热电偶类型,如果和系统不匹配,请参考说明调整设置。
- 如果温控卡在使用过程中出现报警提示,请及时查看故障代码,并查找原因。
- 拔出或插入温控卡前,请关闭温控卡的电源,同时将机箱上的断路器关断。

Ⅲ1、温控箱概述

1-1、箱体特点

突破传统,无提拉部件,重量轻,强度高 机箱采用加固组合式结构,无焊接,方便拆装 整机美观结实,占用空间小,适宜仓储和运输 箱体部件均使用模具冲压成型,部件之间配合精度高 内置机箱电源电压监测模块,实时跟踪检测,发现异常立即报警 兼容 YUDO、Athena、DME、PCS、INCOE 等品牌的温控卡

1-2、可靠性及安全性

多种诊断报警功能 机箱电源实时监测,异常时报警 温控卡带有超压保护装置,不易损坏 输入信号诊断,异常时报警并启动温控箱保护 输出回路诊断,异常时报警并启动温控箱保护 负载状态诊断,异常时报警并启动温控箱保护

1-3、控制技术

先进的微控制器技术 独特的低压软启动除温功能 专有的模糊自适应控制算法,控温精准 启动时无需进行特殊设置,适用范围广 输出调节可选导通相位角调压方式或定时调功方式 用户可选择快速升温模式

Ⅲ 2、技术规格

机箱电源电压 三相五线, AC380~415V 或 三相四线, AC200~242V

温控卡电源电压 AC85~265V

电源频率 50/60Hz 自动转换

电源保护 机箱电源监测模块+温控卡电源保护电路

感温线类型 J/K/E 型热电偶

校准精度 ±0.25%F.S.

控制精度 ±0.5℃

控制算法 模糊自适应 PID

控制模式 闭环(自动),开环(手动) **控温范围** 0°℃~50°ℂ(32~842°F)

额定负载 每温区15A

输出调节方式 导通相位角调压方式/定时调功方式

输入保护 软件诊断接反、开路、错位等+半导体保险丝 **过载保护** 软件诊断短路、过载、错位等+陶瓷管保险丝

报警方式 指示灯闪烁/报警代码提示/蜂鸣器

 连接器类型
 多种可选

 接线方式
 多种可选

环境温度范围 0~55℃(32~131°F) **环境温度范围** 10~85%RH,无结露

Ⅲ 3、温控箱基本结构

温控箱正面

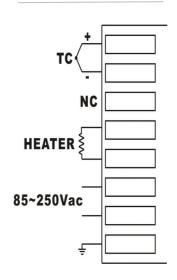
温控卡

温控箱背面

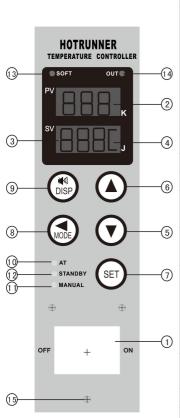
线缆

Ⅲ4、温控箱使用前注意事项

- 连接电源线时,必须按照箱体接线提示操作;
- 注意模具上的接线盒的接线情况和感温线类型;
- 检查加热线、感温线是否连接正确;
- 检查线缆是否与温控箱匹配;
- 检查电源线和线缆;
- 确认输入电压符合温控箱电压规格;
- 上电前,最好关闭电源开关;
- 上电后,确保风扇处于工作状态;
- 更换温控卡或接线,请勿带电操作



Ⅲ5、温控卡使用说明


5-1、技术规格:

- 工作电源: AC85V~250V, 50/60Hz
- 传感器类型: J或 K 型热电偶
- 设定范围: 0~450°C (32~842°F)
- 测量误差: ±2℃
- 冷端补偿误差: ±1℃
- 控制方式: PID 自动控制/手动控制
- 控制精度: ±0.5℃
- 控制输出类型:可控硅调压(PWM) 可控硅调功(SSR)
- 负载能力: 15A, 50~1650W(110V) 100~3600W(240V)
- 使用环境: 0~55℃ (32~131℃)10~85%RH (无结露)

5-2、接线示意:

1 5-3、操作面板说明

1 电源开关		
2 PV 显示窗	A、测量状态时,显示实时温度值	
	B、参数设定状态时,显示参数名称	
	C、测量故障报警时,显示对应的故障代码	
	D、传感器型号为 K 型时右下角小数点点亮	
	A、测量状态 PV-SV 显示模式时,显示目标值	
	B、测量状态 Por-u 显示模式时,显示输出功率百	
	分比	
3 SV 显示窗	C、测量状态显示模式时,显示输出电流	
	D、参数设定状态时,显示参数值	
	E、控制故障报警时,显示对应的故障代码	
	F、传感器型号为 J 型时右下角小数点点亮	
4 温度单位	C-摄氏度,F-华氏度	
5 下调键	用于减小被调整的数值	
6 上调键	用于增大被调整的数值	
7 沙龙 台	用于进入参数设定模式	
7 设定键	保存参数并进入下一个参数设定状态	
8 移位/控制模式键	A、参数设定状态时,用于选择被调整位	
8 移位/拴削铁八娃	B、测量状态时,长按用于选择控制模式	
	A、报警状态下,按下该键可关闭蜂鸣器,使之处	
	于静音状态	
9 静音/显示模式键	B、测量状态时,用于选择显示模式:每次按下该	
	键,即切换到下一个显示模式(目标值显示、输出	
	功率显示、输出电流显示三种轮流切换)	
10 AT 指示灯 控制器在 AT 模式 (PID 参数自整定) 运行		
	亮	
11 MANUAL 指示灯	控制器在 Manual 模式(人工控制)运行时,灯亮	
12standby 指示灯	控制器在 Standby 模式(待机)运行时,灯亮	
13 SOFT 指示灯	控制器在软启动状态运行时,指示灯点亮	
14 OUT 指示灯	控制器在调功方式工作,有输出信号时,灯亮	
15 安装固定孔		

Ⅲ6、操作模式

- 测量状态: 上电自检正常后,控制器进入该工作状态。 PV 显示实时温度值,SV 显示设定目标值(自动)或设定输出功率百分比(手动); (上电时的自动/手动控制模式选择,以及手动模式的输出功率百分比初始值,详见参数 nSL) 在该模式下,可以进行如下操作:
 - ▶ 修改设定目标值(自动控制): 按 SET 键进入目标值调整状态(参数 SV),然后按△、▽键修改设定目标值, 修改完成后按 SET 键保存新的目标值。

 - ▶ 进入参数设定模式: 按 SET 键>3s。
 - ▶ 切换控制模式(自动-待机-手动-AT): 按 MODE 键>3s。
 - ▶ 切换 SV 显示内容(目标值/输出功率%/负载电流): 短按 DISP 键。
- 参数设定状态: 在测量状态下,按 SET 键>3s 即可进入参数设定状态。 PV 显示参数代码, SV 显示对应的参数值;在该状态下,可以进行如下操作:
 - ▶ 修改参数值: 按△、▽键修改,完成后按 SET 键保存并进入下一个参数设定状态。
 - > 查看参数值: 按 SET 键切换参数。
 - ▶ 保存修改并退出参数设定状态: 按 SET 键>3s。
 - 注: 如果 60s 内没有任何按键操作,控制器自动退出参数设定状态,返回测量状态。
- 报警模式: 控制器显示对应的故障代码。

Ⅲ7、 控制模式

- PID 自动控制:
 - 1) 这种类型的控制是一个闭环系统,需要热电偶提供温度反馈信号:
 - 2) 控制器 PV 窗口显示当前测量值, SV 窗口显示设定目标值;
 - 3) 控制器采用 PID 算法, 以设定目标值为目标确定输出功率, 进行自动温度控制。
- 待机:
 - 1) 这种模式与 PID 自动控制模式相同,也是一个闭环控制系统,需要热电偶提供温度反馈信号;
 - 2) 控制器 PV 窗口显示当前测量值, SV 窗口显示待机温度值(设定目标值的 70%);

- 3) 控制器采用 PID 算法,以待机温度值为目标确定输出功率,进行自动温度控制;
 - 4) 待机模式可以通过外部信号启动和停止(参数 Std≠0 时有效)。
- 手动控制:
 - 1) 这种类型的控制是一个开环系统,不需要温度反馈信号;可以在热电偶损坏或者未接热电偶的情况下使用;
 - 2) 控制器 PV 窗口显示当前测量值,SV 窗口显示输出功率百分比; 通过 V和 ↑键,可以增大或减小输出功率百分比; 注: 手动控制的输出功率百分比初始值,详见参数 A-n 和 nSL。
 - 3) 控制器根据设定的输出功率百分比调节输出,进行温度控制。
- AT (PID 参数自整定):

本功能是为了在某些系统中得到最佳 PID 数值。

- 1) 这种类型的控制是一个闭环系统,需要热电偶提供温度反馈信号;
- 2) 通常情况下, AT 功能只在出厂 PID 数值不能满足控制要求的情况下使用;
- 3) 自整定完成后,控制器自动返回 PID 自动控制并采用新的 PID 数值进行控制。
- 4) 当 SuP≤900 时,控制器在设定目标值的 80%处进行整定; 当 SuP>900 时,控制器在设定目标值处进行整定。

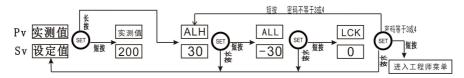
Ⅲ8、软启动(除湿)功能

为防止因潮湿使加热器烧坏,上电后,软启动功能对加热器缓慢加温以达到除湿目的。

- 1) 在软启动时间内,输出功率从0%逐步增加,使温度缓慢上升至100℃并保持;
- 2) 当软启动时间结束,控制器进入PID自动控制模式。

软启动条件:

- 1) 控制器设置为 PID 自动控制模式;
- 2) 软启动功能打开(参数 Sot=1~10);
- 3) 温度测量值小于 100℃。


Ⅲ 9、B00ST 快速升温功能 (参数 boS=1 时有效)

在自动控制升温过程中(软启动结束后),按 **MODE** 键可以启动 BOOST 功能: 在接下来的 15s 内,控制器的输出功率百分比增加 20%(不超过参数 Pub 限定值或 100%)。

Ⅲ 10、参数说明

10.1 普通参数

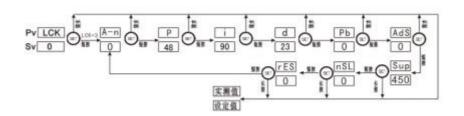
普通参数操作流程图

在正常测量控制状态下,通过短按 SET 键可进入目标值设定状态 (参数 SV);通过长按 3 秒 SET 键可进入后续参数;在参数设定状态下短按 SET 键保存参数值并进入下一个参数;通过 V、 A 键更改对应的参数值。

- ①SV: 目标值,全量程。
- ②ALH: 超高温报警偏差值

当 PV 值 > (目标值+ALH), 控制器给出报警提示,同时关闭输出; 控制器默认上电时或者修改设定值后首次报警免除。

③ALL: 超低温报警偏差值


当 PV 值 〈(目标值+ALL), 控制器给出报警提示。 控制器默认上电时或者修改设定值后首次报警免除。

- ④LCK:参数锁定保护,
 - 0--全部参数都可以查看和修改;
 - 1--全部参数都锁定,只能查看,不能修改;
 - 11--除 SV 以外的参数都锁定,只能查看,不能修改。

10.2 工程师参数

10.2-1 工程师参数 1

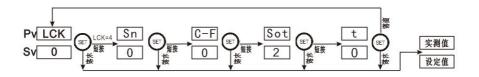
工程师参数1操作流程图

在 LCK 参数输入状态下, SV 显示窗口输入 3, 并短按 SET 键进入工程师参数 1; 在参数设定状态下, 短按 SET 键保存参数值并进入下一个参数; 通过 V、 A键更改对应的参数值。

- ①**A-n**: **手动输出功率初始值,** $0^{\sim}100\%$,与参数 nSL 联合使用(当参数 A-n 生效时,参数值自动存为最新的手动调节输出值)。
- ②P: 加热比例带, 1~999。
- ③i: 积分时间, 0~999s。
- **4d: 微分时间**,0~999s。
- ⑤**Pb: 测量补偿值,**-199²00, PV 显示值=测量值+Pb 值,用于修正系统温度误差。
- ⑥AdS: 机箱内部超温报警值,设置为0的时候该功能关闭,单位同参数C-F设置。
- ⑦SuP: 目标值设定上限,全量程。

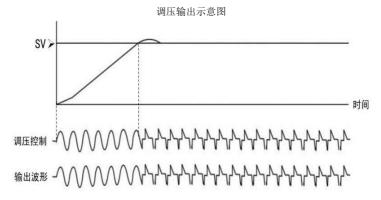
当 SuP=453,且开机测量到温度低于目标值 90%时,自适应功能打开,否则使用卡内默认参数控制(ps:适合稳定生产时使用自适应功能)

- ⑧nSL: 手动/自动模式选择,
 - 0--开机时为自动模式,切换为手动模式时,初始输出功率=自动模式下输出功率;
 - 1--开机时为自动模式,切换到手动模式时,初始输出功率为参数 A-n 值;
 - 2--开机时为手动模式,初始输出功率为0%;
 - 3--开机时为手动模式,输出功率从0开始依次增加到A-n值;

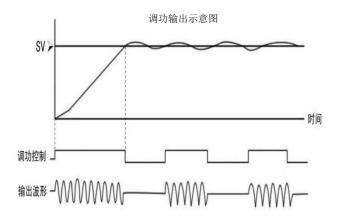

⑨rES:恢复出厂设置

0---关闭:

1--开机时全部参数恢复出厂设置。


10.2-2 工程师参数 2

工程师参数 2 操作流程图



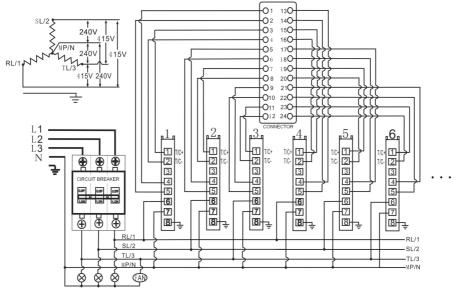
在 LCK 参数输入状态下,SV 显示窗口输入 4,并短按 SET 键进入工程师参数 2;在参数设定状态下,短按 SET 键保存参数值并进入下一个参数;通过 V、 Λ 键更改对应的参数值。

- ①**Sn: 传感器类型选择,**0--J型传感器 1--K型传感器。 测量状态时,长按 DISP 键 10S 可以快速切换 I/K 型。
- ②**C-F: 温度显示单位,** 0--摄氏度 1--华氏度。
- ③**Sot: 软启动除湿功能**, 0--关闭 1[~]10--开启,软启动时间=Sot×80s; **注:** 当温度上升到 100℃(212**下**)时,软启动剩余时间缩减到 1/3。
- **④t:输出类型,**0--调压输出 1~10-调功输出,周期为 t×1s。

- 注: 1)调压方式输出适用于电源电压在 AC190V~AC250V 之间;
 - 2) 调压方式可达到精确控温的目的,但是电源噪音会比调功(过零)输出大。

注: 调功输出方式电源噪音小, 但是对特定温度的控制能力比调压方式稍差。

Ⅲ 11、参数出厂设置

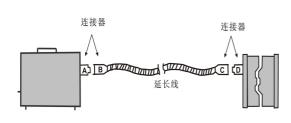

参数代码	出厂设置	参数代码	出厂设置	参数代码	出厂设置
设定值	200	i	120	Snb	1
ALH	30	d	30	HEA	4
ALL	-30	Pb	0	inA	18
LCK	0	Ads	0	Pi	50
Sn	0	Sup	450	SHt	0
C-F	0	nSL	0	boS	0
Sot	2	rES	0	ЕНо	0
t	1	Pub	0	Vol	16
A-n	0	AiN	15		
Р	55	Adr	0		

Ⅲ12、故障代码注释

故障代码	注释	原因	解决方法	
HEA	加热无效	加热器断路或功率太小	立即断电检查传感器和加热器, 或者转人工控制	
HEr	升温无效	传感器短路	检查传感器是否短路	
SEr	加热圈、传感器 位置报警	传感器与加热圈位置接反	立即断电,检查传感器和加热圈 的接线	
ErH	温度过高	温度超出测量上限或传感器断路	立即断电,检查传感器	
ErL	温度过低	温度超出测量下限或传感器接反	立 中 的 电 , 他 旦 代 恋 的	
SHt	电流过载	加热器短路或功率太大	立即断电,检查加热器	
ALH	超高温报警	实际温度过高	检查控制器是否损坏	
ALL	超低温报警	实际温度过低	检查保温层是否已经损坏或转 人工控制	
trS	可控硅损坏报警	可控硅短路被击穿	更换可控硅	
下排 LED 显示电流值并闪烁	过载报警	负载过大,输出电流超过设定值, 出厂设定值为15A	减小负载功率	
ЕНо	加热无效报警	传感器短路或脱离测温部位	断电,检查传感器	
ннн	超压报警	温控卡输入电压超过 270V	断电,检查机箱输入电源	

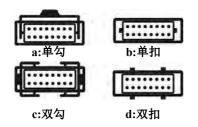
13、接线图

13-1 电源接线图:



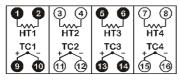
注意:

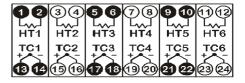
- 1、操作前,检查和它连接的电压。
- 2、所有仪器设备必须使用在符合规格范围内,以防止仪器或者设备损坏。
- 3、维修前需确认已将电源关闭。


务必将 FGND 连接至大地以避免控制器漏电而发生危险。

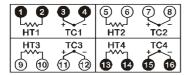
13-2 连接说明:

机箱	输出连接器
2 点	16 针×1
4点	16 针×1
6点	24 针×1
8点	16 针×2
10 点	24 针×2
12 点	24 针×2
24 点	24 针×4

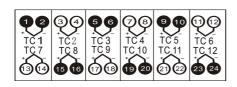

连接器型式

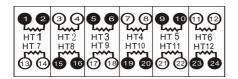

		_			_
连接	器	A	В	С	D
名和	尔	护座	护盖	护座	护盖
型式	t	母	公	母	公
组	1*	c	d	d	с
合 方	2	a	b	b	a
式	3	d	с	С	d

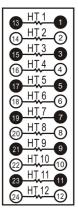
13-3 连接器配线:


接线方式1:

*标准型式




接线方式 2:


接线方式 3:

连接方式 4:

Ⅲ 14、温控箱指示灯现象对应注释、原因及解决方法

现象	注释	原因	解决方法
指示灯长亮	工作正常(180-270V)		
指示灯不亮	对应电源电 压过低报警 (低于 180V)	电源插头线接错,或对应 指示灯的一相电源有接 头脱落形成断开	检查电源插头接线方 式和对应指示灯的那 相的电源接头
指示灯闪烁	对应电源超 压报警 (高于 270V)	对应电源插头线接反	检查对应电源插头三 相电是否连接正确

Ⅲ15、维修记录

		<u> </u>
维修单号		
维修日期		
故障原因及描述		
处理情况		
交验日期		
维修人员 签字		
用户签字		